7 算法

在介绍查找算法,首先需要了解符号表这一抽象数据结构,本文首先介绍了什么是符号表,以及这一抽象数据结构的的API,然后介绍了两种简单的符号表的实现方式。

一符号表

在开始介绍查找算法之前,我们需要定义一个名为符号表(Symbol Table)的抽象数据结构,该数据结构类似我们再C#中使用的Dictionary,他是对具有键值对元素的一种抽象,每一个元素都有一个key和value,我们可以往里面添加key,value键值对,也可以根据key来查找value。在现实的生活中,我们经常会遇到各种需要根据key来查找value的情况,比如DNS根据域名查找IP地址,图书馆根据索引号查找图书等等:

SymbolTableApplication

为了实现这一功能,我们定义一个抽象数据结构,然后选用合适的数据结构来实现:

public class ST

ST() 创建一个查找表对象
void Put(Key key, Value val) 往集合中插入一条键值对记录,如果value为空,不添加
Value Get(Key key) 根据key查找value,如果没找到返回null
void Delete(Key key) 删除键为key的记录
boolean Contains(Key key) 判断集合中是否存在键为key的记录
boolean IsEmpty() 判断查找表是否为空
int Size() 返回集合中键值对的个数
Iterable Keys() 返回集合中所有的键

二实现

1 使用无序链表实现查找表

查找表的实现关键在于数据结构的选择,最简单的一种实现是使用无序链表来实现,每一个节点记录key值,value值以及指向下一个记录的对象。

SymbolTableImplementByUnOrderedLinkList

如图,当我们往链表中插入元素的时候,从表头开始查找,如果找到,则更新value,否则,在表头插入新的节点元素。

实现起来也很简单:

public class SequentSearchSymbolTable<TKey, TValue> : SymbolTables<TKey, TValue> where TKey : IComparable<TKey>, IEquatable<TKey>
{
    private int length = 0;
    Node first;
    private class Node
    {
        public TKey key { get; set; }
        public TValue value { get; set; }
        public Node next { get; set; }

        public Node(TKey key, TValue value, Node next)
        {
            this.key = key;
            this.value = value;
            this.next = next;
        }
    }

    public override TValue Get(TKey key)
    {
        TValue result = default(TValue);
        Node temp = first;
        while (temp != null)
        {
            if (temp.key.Equals(key))
            {
                result = temp.value;
                break;
            }
            temp = temp.next;
        }

        return result;
    }

    public override void Put(TKey key, TValue value)
    {
        Node temp = first;
        while (temp != null)
        {
            if (temp.key.Equals(key))
            {
                temp.value = value;
                return;
            }
            temp = temp.next;
        }
        first = new Node(key, value, first);
        length++;
    }

    ....
}

分析:

从图或者代码中分析可知,插入的时候先要查找,如果存在则更新value,查找的时候需要从链表头进行查找,所以插入和查找的平均时间复杂度均为O(n)。那么有没有效率更好的方法呢,下面就介绍二分查找。

2 使用二分查找实现查找表

和采用无序链表实现不同,二分查找的思想是在内部维护一个按照key排好序的二维数组,每一次查找的时候,跟中间元素进行比较,如果该元素小,则继续左半部分递归查找,否则继续右半部分递归查找。整个实现代码如下:

class BinarySearchSymbolTable<TKey, TValue> : SymbolTables<TKey, TValue> where TKey : IComparable<TKey>, IEquatable<TKey>
{
    private TKey[] keys;
    private TValue[] values;
    private int length;
    private static readonly int INIT_CAPACITY = 2;
    public BinarySearchSymbolTable(int capacity)
    {
        keys = new TKey[capacity];
        values = new TValue[capacity];
        length = capacity;
    }
    public BinarySearchSymbolTable() : this(INIT_CAPACITY)
    {
    }
    /// <summary>
    /// 根据key查找value。
    /// 首先查找key在keys中所处的位置,如果在length范围内,且存在该位置的值等于key,则返回值
    /// 否则,不存在
    /// </summary>
    /// <param name="key"></param>
    /// <returns></returns>
    public override TValue Get(TKey key)
    {
        int i = Rank(key);
        if (i < length && keys[i].Equals(key))
            return values[i];
        else
            return default(TValue);
    }

    /// <summary>
    /// 向符号表中插入key,value键值对。
    /// 如果存在相等的key,则直接更新value,否则将该key,value插入到合适的位置
    ///  1.首先将该位置往后的元素都往后移以为
    ///  2.然后再讲该元素放到为i的位置上
    /// </summary>
    /// <param name="key"></param>
    /// <param name="value"></param>
    public override void Put(TKey key, TValue value)
    {
        int i = Rank(key);
        if (i < length && keys[i].Equals(key))
        {
            values[i] = value;
            return;
        }
        //如果长度相等,则扩容
        if (length == keys.Length) Resize(2 * keys.Length);

        for (int j = length; j > i; j--)
        {
            keys[j] = keys[j - 1];
            values[j] = values[j - 1];
        }

        keys[i] = key;
        values[i] = value;
        length++;
    }

    /// <summary>
    /// 返回key在数组中的位置
    /// </summary>
    /// <param name="key"></param>
    /// <returns></returns>
    private int Rank(TKey key)
    {
        int lo = 0;
        int hi = length - 1;
        while (lo <= hi)
        {
            int mid = lo + (hi - lo) / 2;
            if (key.CompareTo(keys[mid]) > 0) lo = mid + 1;
            else if (key.CompareTo(keys[mid]) < 0) hi = mid - 1;
            else return mid;
        }
        return lo;
    }
    。。。
}

这里面重点是Rank方法,我们可以看到首先获取mid位置,然后将当前元素和mid位置元素比较,然后更新lo或者hi的位置用mid来替换,如果找到相等的,则直接返回mid,否则返回该元素在集合中应该插入的合适位置。上面是使用迭代的方式来实现的,也可以改写为递归:

private int Rank(TKey key, int lo, int hi)
{
    if (lo >= hi) return lo;

    int mid = lo + (hi - lo) / 2;
    if (key.CompareTo(keys[mid]) > 0)
        return Rank(key, mid + 1, hi);
    else if (key.CompareTo(keys[mid]) < 0)
        return Rank(key, lo, hi - 1);
    else
        return mid;
}

二分查找的示意图如下:

BinarySearch

分析:

使用有序的二维数组来实现查找表可以看出,采用二分查找只需要最多lgN+1次的比较即可找到对应元素,所以查找效率比较高。

但是对于插入元素来说,每一次插入不存在的元素,需要将该元素放到指定的位置,然后,将他后面的元素依次后移,所以平均时间复杂度O(n),对于插入来说效率仍然比较低。

三 总结

本文介绍了符号表这一抽象数据结构,然后介绍了两种基本实现:基于无序链表的实现和基于有序数组的实现,两种实现的时间复杂度如下:

SummaryofElementarySTImplementation

可以看到,使用有序数组的二分查找法提高了符号表的查找速度,但是插入效率仍旧没有得到提高,而且在要维护数组有序,还需要进行排序操作。这两种实现方式简单直观,但是无法同时达到较高查找和插入效率。那么有没有一种数据结构既能够在查找的时候有较高的效率,在插入的时候也有较好的效率呢,本文只是一个引子,后面的系列文章将会介绍二叉查找树,平衡查找树以及哈希表。

原文链接:https://www.cnblogs.com/yangecnu/p/Introduce-Symbol-Table-and-Elementary-Implementations.html

results matching ""

    No results matching ""